Fibre elongation requires normal redox homeostasis modulated by cytosolic ascorbate peroxidase in cotton (Gossypium hirsutum)
نویسندگان
چکیده
High-quality cotton fibre equates to a more comfortable textile. Fibre length is an important index of fibre quality. Hydrogen peroxide (H2O2) acts as a signalling molecule in the regulation of fibre elongation. Results from in vitro ovule culture suggest that the alteration of fibre cell H2O2 levels affects fibre development. Ascorbate peroxidase (APX) is an important reactive oxygen species (ROS) scavenging enzyme, and we found that GhAPX1AT/DT encoded one member of the previously unrealized group of cytosolic APXs (cAPXs) that were preferentially expressed during the fibre elongation stage. Transgenic cottons with up- and down-regulation of GhAPX1AT/DT were generated to control fibre endogenous levels of H2O2 Suppression of all cAPX (IAO) resulted in a 3.5-fold increase in H2O2 level in fibres and oxidative stress, which significantly suppressed fibre elongation. The fibre length of transgenic lines with over-expression or specific down-regulation of GhAPX1AT/DT did not show any obvious change. However, the fibres in the over-expression lines exhibited higher tolerance to oxidative stress. Differentially expressed genes (DEGs) in fibres at 10 days post-anthesis (DPA) of IAO lines identified by RNA-seq were related to redox homeostasis, signalling pathways, stress responses and cell wall synthesis, and the DEGs that were up-regulated in IAO lines were also up-regulated in the 10 DPA and 20 DPA fibres of wild cotton compared with domesticated cotton. These results suggest that optimal H2O2 levels and redox state regulated by cytosolic APX are key mechanisms regulating fibre elongation, and dysregulation of the increase in H2O2 induces oxidative stress and results in shorter fibres by initiating secondary cell wall-related gene expression.
منابع مشابه
Effect of chloroplastic overproduction of ascorbate peroxidase on photosynthesis and photoprotection in cotton leaves subjected to low temperature photoinhibition
The photosynthetic performance of leaf discs of transgenic cotton with fourfold elevated activity of ascorbate peroxidase in the chloroplast stroma (APX / plants) was compared to that of wild type (Gossypium hirsutum L. cv. Coker 312) during exposure to 10 8C and 500 mmol photons m 2 s . APX / leaves did not exhibit as large of an increase in cellular H2O2 that was evident in wildtype leaves sh...
متن کاملPectin Methylesterase and Pectin Remodelling Differ in the Fibre Walls of Two Gossypium Species with Very Different Fibre Properties
Pectin, a major component of the primary cell walls of dicot plants, is synthesized in Golgi, secreted into the wall as methylesters and subsequently de-esterified by pectin methylesterase (PME). Pectin remodelling by PMEs is known to be important in regulating cell expansion in plants, but has been poorly studied in cotton. In this study, genome-wide analysis showed that PMEs are a large multi...
متن کاملCloning and Functional Analysis of the Promoter of an Ascorbate Oxidase Gene from Gossypium hirsutum
Apoplastic ascorbate oxidase (AO) plays significant roles in plant cell growth. However, the mechanism of underlying the transcriptional regulation of AO in Gossypium hirsutum remains unclear. Here, we obtained a 1,920-bp promoter sequence from the Gossypium hirsutum ascorbate oxidase (GhAO1) gene, and this GhAO1 promoter included a number of known cis-elements. Promoter activity analysis in ov...
متن کاملA peptide hormone gene, GhPSK promotes fibre elongation and contributes to longer and finer cotton fibre.
Cotton fibres, the single-celled trichomes derived from the ovule epidermis, provide the most important natural material for the global textile industry. A number of studies have demonstrated that regulating endogenous hormone levels through transgenic approaches can improve cotton fibre qualities. Phytosulfokine-α (PSK-α) is a novel peptide hormone in plants that is involved in regulating cell...
متن کاملPhysiological and antioxidant responses of cotton and spurred anoda under interference and mild drought.
The influence of plant interference and a mild drought on gas exchange and oxidative stress was investigated using potted plants of two cotton species (Gossypium hirsutum L. cv. Delta Pine 5415, and Gossypium barbadense L. cv. Pima S-7) and spurred anoda (Anoda cristata L. Schlecht.) of the Malvaceae. Without interference, cotton and spurred anoda had similar net photosynthesis (Pnet) but diffe...
متن کامل